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Abstract
Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the

cantilever. This method enables the simultaneous recording of several material properties and, at the same time, it also increases the

sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of

the fractional derivative of the interaction force. We show that this approximation is valid for situations in which the amplitude of

the first mode is larger than the length of scale of the force, corresponding to the most common experimental case. We also

show that this approximation is valid for very different types of tip–surface forces such as the Lennard-Jones and

Derjaguin–Muller–Toporov forces.
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Introduction
Since the invention of the atomic force microscope (AFM) [1],

numerous AFM studies have been pursued in order to extract

information from the sample properties in a quantitative way

[2-16]. Both static (contact) [2-7] and dynamic [8-11,14-17]

AFM methods have been applied. Static techniques such as

nanoindentation [2], pulsed-force mode [3] and force modula-

tion [4-6] are able to extract quantitative properties of the

sample in a straightforward manner, but they are usually slow

and invasive. Although these techniques allow control of the

force applied to the sample, they are usually limited to forces

above 1 nN, and such forces can damage the structure of soft

samples.

On the other hand, AFM techniques based on dynamic AFM

modes have the ability to make fast and noninvasive measure-

ments. They are potentially faster because the quantitative

measurements can be acquired simultaneously with the topog-

raphy. In addition, the lateral forces applied to the sample can

be smaller, which minimizes the lateral displacement of the

molecules by the tip. Moreover, dynamic modes have already
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Figure 1: (a) Scheme of the first two eigenmodes of a cantilever and the tip deflection under bimodal excitation. In bimodal FM-AFM changes in the
interaction force produce changes in the resonant frequency. The feedback loop keeps the resonant frequency of the 1st mode constant by changing
the minimum tip–surface distance. (b) Frequency shifts of the 1st and 2nd modes as a function of the tip–surface distance.

demonstrated their ability to map compositional properties of

the sample [11,18,19]. However, quantifying physical prop-

erties is hard, because a direct relationship between observables

and forces is difficult to deduce.

Since the observable quantities in dynamic modes are averaged

over many cycles of oscillation (amplitude and phase shift for

amplitude modulation AFM (AM-AFM) [20,21], and frequency

shift and dissipation for FM-AFM [22,23]), it is not straightfor-

ward to obtain an analytical relationship between observables

and forces. It is known that in FM-AFM the frequency shift of

the first mode can be directly related to the gradient of the force

when the amplitude is much smaller than the typical length

scale of the interaction. For larger amplitudes, the frequency

shift is related to the virial of the force [24,25]. Sader and Jarvis

have proposed an alternative interpretation of FM-AFM in

terms of fractional calculus [26,27]. They showed that the

frequency shift can be interpreted as a fractional differential

operator, where the order of differentiation or integration is

dictated by the difference between the amplitude of oscillation

and the length scale of the interaction.

Successful approaches to reconstruct material properties in a

quantitative way came along with the development of novel

AFM techniques, such as scanning probe accelerometer

microscopy (SPAM) [8,28], or by making use of higher

harmonics of the oscillation in order to relate the force with the

observable quantity through its transfer function [11]. In par-

ticular, the torsional-harmonic cantilevers introduced by Sahin

et al. allowed the reconstruction of the effective elastic modulus

of samples in air [14] and liquids [29-31].

Bimodal AFM [32,33] is a force-microscopy method that

allows quantitative mapping of the sample properties (Figure 1).

Bimodal AFM operates by exciting simultaneously the

cantilever at its first and second flexural resonances. The tech-

nique provides an increase in the sensitivity toward force varia-

tions [15,18,19,33-36] with respect to conventional AFM. At

the same time, it duplicates the number of information channels,

through either the amplitude and phase shift of the second mode

in bimodal AM-AFM, or the frequency shift Δf2 and dissipa-

tion of the second mode in bimodal FM-AFM. Experimental

measurements have shown the ability of bimodal AFM to

measure a variety of interactions, from electrostatic to magnetic

or mechanical, both in ultrahigh vacuum [36-38], air [33,34,39-

41] and liquids [15,18,19]. Furthermore, it is compatible with

both frequency-modulated [15,36-38] and amplitude-modu-

lated AFM techniques [18,19,33,34,39-41]. Recently, Kawai et

al. [36] and Aksoy and Atalar [42] found a relationship between

Δf2 and the average gradient of the force over one period of

oscillation of the first mode.

Here, we propose a theoretical approach to determine the

frequency shift in bimodal FM-AFM in terms of a fractional

differential operator of the tip–surface interaction force. The

frequency shift of the second mode is related to a quantity that

is intermediate between the interaction force and the force

gradient. This quantity is defined mathematically as the half-

derivative of the interaction force. This approach does not make

any assumptions on the force law, and it explains the advan-

tages of bimodal FM-AFM with respect to conventional

FM-AFM whenever the amplitudes of the first mode are

larger that the characteristic length of scale of the interaction

force.

Results and Discussion
Frequency shift of the second mode in
bimodal AFM
The problem of a cantilever vibrating under bimodal excitation

can be studied by means of the averaged quantities of the dissi-

pated energy and the virial [43-45]. The virial of the nth mode is

defined as
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(1)

where t is the time and T is the period of the oscillation

The tip deflection in bimodal FM-AFM can be described as:

(2)

where z0 is the mean deflection, and An and ωn are the ampli-

tude and the frequency of the nth mode.

By substituting Equation 2 into Equation 1 and replacing Fts by

its equivalent according to the Newton equation, an expression

for the virial of the second mode that applies to bimodal

FM-AFM is deduced [45]

(3)

An additional approximation can be performed by considering

that the free amplitude of the second mode A2 is much lower

than the free amplitude of the first mode (A2 << A1) [15,36,42].

In this case z(t) can be expanded in powers of A2cos(ω2t − π/2),

and the virial of the second mode is given by

(4)

where zc is the average cantilever–sample separation.

By combining Equation 3 and Equation 4 we deduce a relation-

ship between the second-mode parameters and the gradient of

the force averaged over one cycle of the oscillation of the first

mode.

(5)

where fn = ωn/2π, and dmin is the minimum distance between tip

and sample (dmin ≈ zc − A1).

Interpretation of the frequency shift in
bimodal FM-AFM in terms of the half-
derivative of the force
By defining a new variable u = A1cos(ωt − π/2), the frequency

shift of the second mode (Equation 5) can be expressed as

the convolution of the force gradient with the function

, in the same way that the frequency shift of the

first mode in conventional FM-AFM can be seen as the convo-

lution of the force gradient with the semicircle 

[24]:

(6)

By using the definition of the Laplace transforms of the force

F(z) and its derivative F′(z)

(7)

(8)

By substituting Equation 8 in Equation 6 we have

(9)

where

(10)

T′(x) can be expressed in terms of the modified Bessel function

of the first kind of order zero I0(x) (T′(x) = I0(x)e−x) [46]. By

comparing Equation 8 and Equation 9, it can be seen that Δf2 is

related to the gradient of the force through the derivative oper-

ator and a function T′(λ). By analogy with the Sader and Jarvis

method to express the frequency shift of the first mode in

conventional AFM [27], the local power behavior of the func-

tion T′(x) around any point  can be studied. By matching

the value of T′(x) and its first derivative to the expression

T′(x) ≈ cxd, where c and d are local constants, we obtain an

expression for the term d, which governs the power behavior of

the function T′(x), and for the term c
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(11)

(12)

For x → 0, we can see that , which means that

 while for larger x, , which means that

 This implies that when A1 >> 1/λ

(13)

By introducing Equation 13 in Equation 9,

(14)

By using the property of the Laplace transform [27]

(15)

a direct relationship between Δf2 and the half-derivative of the

force  and, alternatively, to the half-integral of the

force gradient  can be found

(16)

(17)

where

(18)

(19)

and Γ(n) is the Gamma function. The above fractional defini-

tions correspond to the so-called right-sided forms of the frac-

tional derivative and integrals [47]. Therefore the frequency

shift of the second mode can be related to the half-derivative of

the force, or, alternatively, it can be related to the half-integral

of the force gradient whenever the amplitude of the first mode

A1 is larger than the typical length scale of the interaction force.

This is the typical experimental situation in bimodal FM-AFM,

in which large amplitudes of the first mode are used in order to

make the imaging stable [36,37] and to increase the contrast in

the bimodal channel [18,19].

Fractional derivatives have a wide range of applications [47,48].

For example, they have been used for describing anomalous-

diffusion processes, for modeling the behavior of polymers and

in viscoelastic-damping models. In general, there is a near-

continuous transformation of a function into its derivative by

means of fractional derivatives. To illustrate this, Figure 2

shows the behavior of a function, together with its derivative,

half-derivative and half-integral. We observe that the half-

derivative always lies between the function and its derivative,

while the half-integral is displaced to the left with respect to the

function, and lies between the function and its integral.

Figure 2 shows the function (1/x6 − 1/x2), together with its

derivative, its integral, its half-derivative and its half-integral. It

is worth mentioning that the minimum and its x value for the

half-derivative are situated between those of the derivative and

the original function (Figure 2a). A similar situation happens

with the half-integral in comparison with the function and its

integral (Figure 2b).

Next, we demonstrate that the frequency shift in bimodal AFM

is directly related to the half-derivative of the interaction force

for two different tip–surface forces, namely Lennard-Jones

forces and those described by the DMT model. We have

compared the results obtained from Equation 6 with the results

estimated from the half-derivative of the force (Equation 16) for

a Lennard-Jones force and for the force appearing in the DMT

model [49]. The force constant, resonant frequency and quality

factor of the first and second flexural modes of the cantilever

are, respectively, k1 = 4 N/m, k2 = 226.8 N/m, f01 = 103.784

kHz, f02 = 666.293 kHz, Q1 = 200, Q2 = 240. The ratio of the

amplitudes A1/A2 = 1000 nm and the tip radius R = 3 nm.

The Lennard-Jones force for the interaction between two atoms

is [50]

(20)
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Figure 2: Fractional operators of (0.14/x6 − 1/x2). (a) The function, half-derivative and derivative are plotted. (b) The function, half-integral and inte-
gral are plotted.

Figure 3: Comparison between the general expression (Equation 6) and the half-derivative (Equation 16) relationship to the frequency shift of the
second mode in bimodal FM-AFM for two different forces. (a) Lennard-Jones force characterized by ε = 0.5 · 10−20 J and σ = 0.1 nm, and A1 = 4 nm;
(b) DMT force characterized by H = 0.2 · 10−20 J, Eeff = 300 MPa, and A1 = 10 nm.

where ε is related to the depth of the energy potential and σ to

the length scale of the interaction force.

For the force which appears in the DMT model [51]

(21)

where H is the Hamaker constant of the long-range van der

Waals forces, d0 is the equilibrium distance, R is the tip radius

and Eeff is the effective Young’s modulus, which is related to

the Young’s moduli Et and Es and Poisson coefficients νt and νs

of the tip and sample by

(22)

Figure 3 shows the comparison between the frequency shift of

the second mode found through Equation 6 compared to that

found by using the numerical half-derivative of the force (Equa-

tion 16) for a Lennard-Jones force and for a DMT force. The

agreement obtained between the numerical simulations and the

results deduced from the half-derivative of the interaction force

are remarkable (see insets). Because the dependencies of the

force on the distance in the Lennard-Jones and DTM models are

rather different, we infer that the approach deduced here is

general and applies to any type of force that could be found in

an AFM experiment.
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Figure 4: Comparison between the general expression (Equation 23) and the half-integral relationship (Equation 24) to the frequency shift of the first
mode in bimodal FM-AFM for two different forces. (a) Lennard-Jones force characterized by ε = 0.5 · 10−20 J and σ = 0.1 nm, and A1 = 4 nm; (b) DMT
force characterized by H = 0.2 · 10−20 J, Eeff = 300 MPa, and A1 = 10 nm.

Interpretation of Δf1 in bimodal FM-AFM in
terms of the half-integral of the force
For the sake of completeness, we compare the results obtained

by using the expressions relating the frequency shift of the first

mode and the half-integral of the force as deduced by Sader and

Jarvis [27]. Δf1 can be seen as the convolution of the force with

the function  [24]:

(23)

When the amplitude of the first mode is larger than the length

scale of the interaction, the frequency shift of the first mode is

related to the half-integral of the force:

(24)

Figure 4 shows the agreement obtained between the frequency

shift of the first mode found through Equation 23 compared to

that found by using the numerical half-integral of the force

(Equation 24) for a Lennard-Jones force and for a DMT force.

This agreement also supports the interpretation of the observ-

able quantities in terms of fractional operators. In addition, it

illustrates the differences of using bimodal AFM over conven-

tional FM-AFM. When A1 is much smaller than the length scale

of the interaction, the corresponding observable is proportional

to the derivative both in conventional FM-AFM and in bimodal

FM-AFM. However, when A1 is larger than the length scale of

the interaction, Δf1 is proportional to the half-integral of the

force, while Δf2 is proportional to the half-derivative of the

force.

Dependence of the approximate expressions
for Δf1 and Δf2 on A1
To better appreciate the differences between the frequency

shifts of the first and second modes, we represent their depend-

ence on the amplitude of the first mode (Figure 5).

When the amplitude of the first mode is much smaller than the

length scale of the force, the asymptotic limit of d(x) and c(x)

(Equation 11 and Equation 12) for small x enables us to ap-

proximate  By inserting this in Equation 9 we obtain

(25)

which corresponds to the experimental conditions of Naitoh et

al. [35] in bimodal FM-AFM. This equation has the same

dependence with the mode parameters and the force gradient as

the one found for the frequency shift of the first mode in

conventional FM-AFM in the limit of small amplitudes [24]

(26)

Figure 5a and Figure 5b show a comparison between the numer-

ical results obtained from Equation 6 and the half-derivative

(Equation 16) and derivative (Equation 25) for the frequency

shift of the second mode approximations, which are valid in the
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Figure 5: Comparison between the general expression for the frequency shift of the second mode in bimodal FM-AFM (Equation 6) and the (a) half-
derivative relationship (Equation 16) and (b) derivative relationship (Equation 25). Comparison between the general expression for the frequency shift
of the first mode in bimodal FM-AFM (Equation 23) and the (c) half-integral relationship (Equation 24) and (d) derivative relationship (Equation 26) for
different A1 and a Lennard-Jones force characterized by ε = 0.5 · 10−20 J and σ = 0.1 nm, A1/A2 = 5000.

large and small amplitude limits, respectively. For A1 above

0.1 nm, the half-derivative approximation should be used, while

for A1 below 0.1 nm, the derivative approximation is a good

choice. Figure 5c and Figure 5d show a comparison between the

numerical results obtained from Equation 23 and the half-inte-

gral (Equation 24) and derivative (Equation 26) approximations

for the frequency shift of the first mode, which are valid in the

large and small amplitude limits. When A1 is above 0.4 nm, the

half-integral approximation can be used, while the derivative

approximation is a good choice only when A1 is smaller than

0.01 nm. There is a range between A1 = 0.01 and A1 = 0.4 nm,

which depends on the typical length scale of the interaction, in

which an approximation for intermediate amplitudes should be

used.

Conclusion
We have deduced an expression that relates the frequency shifts

in bimodal frequency modulation AFM with the half-derivative

of the tip–surface force or, alternatively, with the half-integral

of the force gradient. The approximations are valid for the

common experimental situation in which the amplitude of the

first mode is larger than the length scale of the interaction force.

The approximations are also valid for two different types of

forces, namely Lennard-Jones interactions and DMT contact-

mechanics forces. We conclude that the fractional-calculus ap-

proach is well suited to describe bimodal frequency modulation

AFM experiments, which are characterized by the presence of

several forces with different distance dependencies.
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